Survival of Bifidobacterium longum LMG 13197 microencapsulated in Vegetal or Vegetal-inulin matrix in simulated gastrointestinal fluids and yoghurt
نویسندگان
چکیده
BACKGROUND Vegetal BM 297 ATO is a food grade lipid based material extracted from vegetables, and certified for human consumption. In this study, Bifidobacterium longum LMG 13197 was encapsulated in Vegetal BM 297 ATO-inulin by freeze drying, followed by evaluation of its survival in simulated gastrointestinal fluids and yoghurt. Furthermore, the effect of incorporation of such microparticles on physico-chemical properties of yoghurt was examined. Unencapsulated and encapsulated B. longum cells were exposed to simulated gastrointestinal fluids for 6 h and yoghurt at 4 °C for 6 weeks, and then evaluated for viability using plate counts. RESULTS By the end of exposure to simulated gastrointestinal fluids, encapsulated cells were >5 log units higher than their unencapsulated counterparts. Furthermore, their levels in yoghurt remained above 10(6) cfu mL(-1) until the end of 6 weeks of storage while unencapsulated levels were at this level up to 5 weeks. There were no significant differences in pH values of yoghurts containing encapsulated cells throughout the storage (p > 0.05). However, significant differences in the lightness and yellowness of these yoghurts were recorded, although the total colour change was negligible. CONCLUSIONS Vegetal-inulin encapsulation protected probiotics in gastrointestinal fluids and yoghurt with negligible effects to its appearance, thus can be used for fortification of yoghurt with probiotics.
منابع مشابه
Cocktails of probiotics pre-adapted to multiple stress factors are more robust under simulated gastrointestinal conditions than their parental counterparts and exhibit enhanced antagonistic capabilities against Escherichia coli and Staphylococcus aureus
BACKGROUND The success of the probiotics in delivery of health benefits depends on their ability to withstand the technological and gastrointestinal conditions; hence development of robust cultures is critical to the probiotic industry. Combinations of probiotic cultures have proven to be more effective than the use of single cultures for treatment and prevention of heterogeneous diseases. We i...
متن کاملMicroencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition
Microencapsulation as one of the most modern methods has remarkable effects on probiotic survival. In this study Lactobacillus casei (ATCC 39392) and Bifidobacterium bifidum (ATCC 29521) were encapsulated using calcium alginate-gelatinized starch, chitosan coating and inulin via emulsion technique, and were incubated in simulated gastric juice (along with pepsin, pH=1.5) and simulated intestina...
متن کاملMicroencapsulation of probiotics by calcium alginate-gelatinized starch with chitosan coating and evaluation of survival in simulated human gastro-intestinal condition
Microencapsulation as one of the most modern methods has remarkable effects on probiotic survival. In this study Lactobacillus casei (ATCC 39392) and Bifidobacterium bifidum (ATCC 29521) were encapsulated using calcium alginate-gelatinized starch, chitosan coating and inulin via emulsion technique, and were incubated in simulated gastric juice (along with pepsin, pH=1.5) and simulated intestina...
متن کاملApplications of Microencapsulated Bifidobacterium Longum with Eleutherine Americana in Fresh Milk Tofu and Pineapple Juice
Bifidobacterium longum was microencapsulated by extrusion technique and added in fresh milk tofu and pineapple juice. Microencapsulation of B. longum with Eleutherine americana extract, oligosaccharides extract, and commercial fructo-oligosaccharides was assessed for the bacterial survival after sequential exposure to simulated gastric and intestinal juices, and refrigeration storage. Microenca...
متن کاملPreparation of Eleutherine americana-Alginate Complex Microcapsules and Application in Bifidobacterium longum
Microencapsulation using extrusion and emulsion techniques was prepared for Bifidobacterium longum protection against sequential exposure to simulated gastric and intestinal juices, refrigeration storage and heat treatment. Eleutherine americana was used as the co-encapsulating agent. Hydrolysis of E. americana by gastric and intestinal juices was also determined. E. americana and its oligosacc...
متن کامل